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Light microscopic analysis of cell morphology provides a high-content readout of cell function and protein
localization. Cell arrays and microwell transfection assays on cultured cells have made cell phenotype analysis
accessible to high-throughput experiments. Both the localization of each protein in the proteome and the effect of
RNAi knock-down of individual genes on cell morphology can be assayed by manual inspection of microscopic
images. However, the use of morphological readouts for functional genomics requires fast and automatic
identification of complex cellular phenotypes. Here, we present a fully automated platform for high-throughput cell
phenotype screening combining human live cell arrays, screening microscopy, and machine-learning-based
classification methods. Efficiency of this platform is demonstrated by classification of eleven subcellular patterns
marked by GFP-tagged proteins. Our classification method can be adapted to virtually any microscopic assay based
on cell morphology, opening a wide range of applications including large-scale RNAi screening in human cells.

[Supplemental material is available online at www.genome.org. The following individuals kindly provided reagents,
samples, or unpublished information as indicated in the paper: S. Wiemann and A. Poustka.]

Genomewide cDNA overexpression and gene knock-down by
RNA interference enable gain and loss of function screens in
many systems of cultured cells that were traditionally not acces-
sible to genetic screens (e.g., Drosophila Schneider cells, human
cell cultures). In addition to gain and loss of function, the sub-
cellular localization of the whole proteome can be determined by
expressing tagged proteins (Pepperkok et al. 2001; Huh et al.
2003; Simpson and Pepperkok 2003) providing essential indica-
tions for protein function. Similar to classical genetics, the phe-
notype of cultured cells is typically determined by morphological
analysis and a more detailed phenotypic characterization can be
obtained by single-cell fluorescence microscopy of appropriate
marker proteins (Rolls et al. 1999). Cell arrays (Ziauddin and Saba-
tini 2001) and microwell transfection assays (Liebel et al. 2003)
on cultured cells have made cell phenotype analysis accessible to
high-throughput. While transfection and gene tagging proce-
dures for such studies have been adapted to automation (Simp-
son et al. 2000), phenotypes are currently typically determined
by manual microscopy (Kiger et al. 2003) even when thousands
of full-length GFP-tagged proteins are localized (Huh et al. 2003).

Such a manual approach is a source for bias in data analysis
and causes a bottleneck for large-scale experiments. Automated
systems for the interpretation of cell images from cell arrays
would provide three important advantages over manual practice:
(1) high-throughput performance; (2) quantitative and repro-
ducible identification of cellular phenotypes; and therefore (3)
consistent and unbiased phenotypic information in protein
databases.

Automatic classification of microscopic images typically re-
quires the extraction of quantitative parameters (features) from
the digital image (Egmont-Petersen et al. 2002). Such features are
based on morphology (e.g., number of objects), texture (e.g.,

granularity), or other gray-level-based measures. Selecting subsets
of the many possible features is then necessary to reduce the
complexity of the classifier. Different feature selection algo-
rithms for elimination of noninformative features have been sug-
gested in the literature (Leray and Gallinari 1999). After feature
extraction, a statistical model needs to be learned from data that
accurately associates image features with predefined phenotype
classes. In the field of machine-learning, this is usually referred to
as supervised training of a classifier. The performance of a clas-
sifier is measured by the accuracy to correctly predict unseen test
images using the same set of input features (Jain et al. 2000).
Stepwise discriminant analysis and genetic algorithms so far pro-
duced the highest accuracies (∼87%; Huang et al. 2003). For au-
tomated prediction of the localization of 46 randomly GFP-
tagged proteins (Jarvik et al. 1996), hierarchical clustering was
proposed (Murphy et al. 2002). However, even though 3D image
features were used to identify twelve classes derived from hierar-
chical clustering, recognition was less successful, with only 70%
accuracy (Chen et al. 2003).

Importantly, none of the existing studies on automatic clas-
sification of subcellular localization has used images that were
captured automatically such as in high-throughput microscopy
screens that yield images of inherently lower quality. Manual
selection, centering, focusing, and control of the illumination
and detection parameters in the imaging process evidently leads
to better classification results than in an automated imaging sys-
tem. In this study, we present a fully automated system for the
production and imaging of human cell arrays, and most impor-
tantly, an automated classification of phenotypes. As a case
study, we set up an overexpression screen, in which we marked
eleven different subcellular patterns by GFP-tagged proteins,
each of them characterizing a distinct phenotype.

RESULTS

Workflow Concept
The focus of this study was to set up a framework for high-
throughput cell phenotyping. To make this screen scalable to the

5These two authors contributed equally to this work.
6Corresponding author.
E-MAIL r.eils@dkfz.de; FAX 49-6221-423620.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.2383804.

Methods

1130 Genome Research 14:1130–1136 ©2004 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/04; www.genome.org
www.genome.org



high number of human genes, we based our screen on human
cell arrays (Fig. 1). We generated a variety of phenotypes in a
proof-of-principle study by an overexpression screen, in which
we marked eleven different subcellular patterns by GFP-tagged
proteins, each of them characterizing a distinct phenotype. To
allow automation of cell array production, we developed an im-
proved protocol for solid phase transfection by mixing all re-
quired transfection components prior to robotic spotting. Thus,
transfection-ready DNA arrays on chambered coverglasses com-
patible with direct live cell observation can be printed, dried, and
stored, and cells are simply seeded on the array one day prior to
phenotype analysis.

For fully automated phenotype analysis, we designed an im-
aging strategy to automatically capture single-cell fluorescence
images from entire live cell arrays with high resolution. We
implemented our imaging strategy by adapting a commercial
widefield fluorescence scanning microscope (Mehes et al. 2000),
which automatically located each spot in the array, auto-focused
the cell layer, and then captured high resolution images from
each GFP-expressing cell.

For enhanced detection of cells an auto-focus algorithm is
applied first to cell nuclei counterstained by Hoechst, then the
GFP or YFP signal is automatically integrated and the auto-focus
algorithm is executed again on the protein signal. Auto-focusing

Figure 1 Workflow of phenotype classification system. The mix of targeted DNA (e.g., subcellular clones–GFP fusion), gelatin, and transfection
reagents are prepared in microwells and spotted in arrays into chamber slides by a DNA-spotting robot. Cultured cells are added to the chamber slides
and transfected with the DNA on the arrayed spots. After 10 h incubation at 37°C the fluorescence signal of the expressed GFP signal can be visualized.
On the automatic scanning platform a motorized stage and motorized z-stepper perform the scanning of the live cells. The control of the illumination
and the automatic calculation of the integration time allow an automatic acquisition of cell images. Cells with GFP-signals are captured and image
features are extracted. These features serve as input for training of the automated classification system.
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works reliably in cells growing as monolayers, making this
method applicable to a wide variety of cultured mammalian cells.
For this study we chose the MCF7 breast cancer cell line but we
have obtained similar results with HeLa cells (data not shown). A
series of images is then acquired with variable integration times
of the CCD camera, thereby allowing selection of cells with good
signal-to-noise ratio from a field with cells at different expression
levels. In the next step, objects potentially representing cell nuclei
are segmented based on the counterstained signal. Finally, the
system selects ‘valid’ cell nuclei out of the set of candidate objects
based on morphological parameters (for details see Methods).

Subcellular Class Design With Additional Artifact Class
The above-described strategy allowed us to generate large
amounts of images, which we then used as input for our auto-
mated phenotype classification system.
The described scanning system cap-
tured 2182 images automatically. This
set of images was used to build an au-
tomated classification system that
could identify the 11 different classes of
subcellular localizations. For the phe-
notypes and number of analyzed cells
per protein class refer to Figure 2. Upon
manual inspection all images in each
class that could not be properly as-
signed were labeled as artifacts. By a
random selection every fifth image was
set aside as test set for independent
evaluation of the classifier constituting
the test set. Thus, 1755 (80%) of the im-
ages were used for the training of the
classifier (training set), and 427 (20%)
of all images were assigned to the test
set. All classification results given below
refer to the performance of the classifier
on this test set. Training of an accurate
classification system was greatly cor-
rupted by the high number (∼50%) of
all images representing cells with obvi-
ous artifacts such as dead or extremely
overexpressed cells (Fig. 2B). The fre-
quency of false-positive artifact capture
could not be further reduced because
more stringent selection criteria during
acquisition would have lead to rejec-
tion also of certain true-positive subcel-
lular localizations (Supplemental Fig.
1). Artifacts are unavoidable in a fully
automated screen, since the quality
control for cell selection cannot be as
stringent as with manually acquired
images, where typically only evenly
shaped cells are chosen in a biased way
by a microscopist. Thus, we designed
our classification method to deal with
artifacts by including an artifact class
into the training procedure and by ex-
plicitly defining discriminating features
of artifact images.

Designing Optimal
Classification Schemes
Image classification is the critical next
step in the analysis stream. To find the

optimal method for classification of automatically captured im-
ages, we compared two well-known methods in machine learn-
ing, namely, Artificial Neural Networks (ANN; MacKay 1992;
Bishop 2000) and Support Vector Machines (SVMs; Vapnik 1995;
Smola and Schölkopf 1998). SVM is a well-regularized method
(Vapnik 1995; Smola and Schölkopf 1998)—that is, it performs
well on images that were not used for training of the classifier. In
contrast, ANN tend to overfit the training set during learning,
therefore it was suggested to combine it with Bayesian learning to
achieve regularization (MacKay 1992). This approach is referred
to as BayesANN. Alternatively, evolutionary search using genetic
algorithms (GA) can be used for global optimization of param-
eters in the ANN. This approach is referred to as ANN/GA. For all
suggested methods, different classification models correspond-
ing to different parameter settings were trained and validated

Figure 2 Automatically captured images of live MCF7 cells representing localization classes. (A) Cells
were counterstained by Hoechst (blue) and different GFP-tagged cDNAs were expressed in cells trans-
fected on cell arrays (green). Image acquisition is designed in such a way that each image contains only
one cell. From top left to bottom right: GFP-tagged NES→cytoplasm (96 images), EGFP→cyto-nuclear
(170 images), GFP-tagged cDNA #488→mitochondria (108 images), YFP-tagged LB1→nuclear lamina
(108 images), GFP-tagged ErbB1→plasma membrane (70 images), YFP-tagged SRb→endoplasmatic
reticulum (84 images), GFP-tagged cDNA #351→nucleoli (116 images), YFP-tagged cDNA #447→per-
oxisomes (119 images), YFP-tagged cDNA #22f21→microtubules (78 images), YFP-tagged
H2B→nuclear (111 images), YFP-tagged GalT→Golgi (93 images) imaged from two different spatial
directions. For cDNA reference see Supplemental Table 1 (see also http://www.dkfz.de/LIFEdb/ and
http://harvester.embl.de/; Wiemann et al. 2001). (B) Artifacts of the corresponding subcellular local-
ization class are shown in the right column: mitochondria artifacts (116 images), endoplasmatic reticu-
lum artifacts (99 images), microtubules artifact (67 images), Golgi artifact (77 images). In total 1035
images were labeled as artifacts and assigned to this class. Note that artifact cells show expression levels
both below and above the level of expression typically observed for valid cells (left). Hence, the level of
expression is not sufficient to discriminate artifact cells from valid cells (see also Supplemental Fig. 1).
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(model selection by cross-validation) on the training set. The
optimal models were then used to predict phenotype classes for
the test images (for details see Methods). The classification meth-
ods were combined with three feature selection methods: Mutual
Information (MI; Ragg 2002), Significance Analysis of Microar-
rays (SAM; Tusher et al. 2001), and stepwise discriminant analysis
(STEPWISE; Leray and Gallinari 1999). Note, that SAM is a sta-
tistical method that has been developed for identification of dif-
ferentially expressed genes in microarray gene expression studies.
As the method is based on commonly used statistical tests like
t-test and permutation test, we readily applied it for image fea-
ture selection (for details on feature selection see Methods).

Since the optimal number of image features was typically
between 20 and 25 features for the BayesANN approach (data not
shown), we based the training of all classification methods on
only 25 features for better comparison. The 25 best-ranked fea-
tures of the STEPWISE or SAM selections contained predomi-
nately texture-related features such as granularities and co-
occurrence (Supplemental Table 2). Texture-related features thus
appear to be at least as efficient as morphological object features
for automatic classification of subcellular patterns. Further, they
are more robust with respect to biological variation. Figure 3

summarizes the results from these classification algorithms. The
ANN/GA performed worse than the other two methods (Fig. 3A)
and was therefore not further considered in our study. BayesANN
and SVM classification algorithms performed well in combina-
tion with the feature selection methods SAM and STEPWISE. The
two best combinations of algorithms were generated through
SVM/STEPWISE and BayesANN/SAM with accuracies of 80.5%
and 82.2%, respectively (Fig. 3B; Supplemental Table 3). In con-
trast to ANNs, the training of SVM does not strongly depend on
feature preselection (Ramaswamy et al. 2001). Accordingly, the
recognition rate of the SVM classifier based on the full set of 323
features instead of 25 selected features is only reduced by 3%
despite the much higher dimensionality of the classification task
(Fig. 3A). Thus, considering a comparable prediction accuracy at
a much lower sensitivity to feature selection SVMs appear to be
more suited than ANNs when analyzing a set of very variable
images. Through the combination of different imaging strategies,
automated object detection and feature subset selection we were
able to set up a robust and fully automated framework for phe-
notype classification that achieves high accuracy even for appli-
cations with large biological variability and a considerably high
number of artifacts.

Figure 3 Accuracy of phenotype classification. (A) Classification accuracy determined on the test set for three different classification algorithms using
the first 25 ranked features obtained by three different feature selection methods. In contrast to the BayesANN approach, the ANN/GA runs with
nonconvergent fivefold cross-validation as regularization. As the result of the BayesANN classifier is dependent on random initialization of network
weights, the averaged classification accuracies and the corresponding standard deviations of 10 classification runs of the same test set are shown, while
the ANN/GA generates many similar networks during the evolutionary search process. Only the SVM was trained with the entire set of 323 features.
(B) While BayesANN performed best on average in combination with SAM for feature selection, the overall best classifier was obtained by combination
of BayesANN with STEPWISE (82.6% accuracy). The cone diagram shows single class accuracies obtained by this overall best classifier for all subcellular
classes and artifact class.
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DISCUSSION

In the present study, we developed a fully automated workflow
from cell array production to phenotype analysis. As a case study
we chose to phenotype cells by identification of the subcellular
localization of marker proteins that can be used as indicators for
the cellular state. We achieved a very high overall accuracy of
more than 80% prediction for eleven localization classes with our
fully automated system. An even better accuracy was affected
mostly by three problematic localizations that were difficult to
distinguish at the resolution of our imaging system. The local-
ization class in our study that could be classified most ineffi-
ciently was endoplasmatic reticulum (accuracy 31%), which was
frequently incorrectly classified as microtubules (accuracy 47%)
or mitochondria (accuracy 62%). These misclassifications are in
agreement with the visual similarities of the corresponding im-
ages (Fig. 2). All other automatically imaged subcellular patterns
were recognized with accuracy between 74% and 95%.

A key for achieving this high degree of accuracy was to in-
clude all artifacts into one additional localization class. Despite
its heterogeneity, the artifact class (Fig. 2) could be accurately
distinguished from all other subcellular classes (accuracy 91%),
but receives false positives from other classes. Importantly, the
prediction within all other classes of subcellular localizations
achieved a specificity per class of more than 97% (Supplemental
Table 3). Thus, only a very small proportion of all images is as-
signed incorrectly to an individual class.

Biological variation of the same phenotype in different cells
remained the most challenging aspect of our fully automated
workflow from cell array production to phenotype analysis. By
choosing transient overexpression of GFP-tagged cDNAs as a
proof-of-principle application this problem was probably more
severe than in immunofluorescence screens based on endog-
enous proteins (Kiger et al. 2003), where one would expect varia-
tions in protein levels between different cells to be less pro-
nounced. However, changes of cellular morphology could be
much more subtle and heterogeneous in RNAi screens, where
each class lacks a different gene. To address such subtle varia-
tions, colocalization of several domains (e.g., microtubules and
plasma membrane) labeled by other spectral mutants of GFP
would help to extract appropriate morphological image features.
A two-level hierarchal classification could first predict the cellu-
lar compartment of interest in the image of the first label. Sub-
sequently, the distinct morphology within this compartment
would be predicted based on the image of the second label. In
addition, we are confident that classification rates could be fur-
ther improved with a larger training data set, which was beyond
the scope of this study.

To assess the classification ability of our system for different
cDNA clones not being used in the training step, we automati-
cally captured 20 images of microtubule-related Ensconsin (Bu-
linski et al. 2001) and mitochondrial cDNA clone 1692 or
DKFZp434D0421 (Accession no. AL136804). The overall best
BayesANN classifier achieved accuracies of 55% and 45%, respec-
tively, for these clones, which was in the same range (47% and
62%, respectively) as for the cDNA clones originally used as
markers for the respective phenotype classes. This assessment
further supports the generalization ability of our classification
system.

The automated captured images of endoplasmatic reticulum
and microtubles are partly very similar. The lack of sharp images
with a low depth of image field in this study appeared to be
problematic for the separation of the fine tubular structure of
microtubules and the membrane network of endoplasmatic re-
ticulum. Using a cell line that has a flatter morphology than the
MCF7 cells employed in our study, where a significant overlap

between ER and microtubules in the rounded up cytoplasm is
observed, can most likely solve this problem. For subtle pheno-
typic differences we anticipate that a confocal screening micro-
scope will improve accuracy in the future and we have started
work on such a system. The essential advance of this study is the
integration of automated classification with automated micros-
copy and production of cell arrays, which can potentially be
applied to large, genomewide cell arrays. Our system can also be
easily extended to extract dynamic features from time-lapse
screening studies (Gonczy et al. 2000). Unbiased and robust
analysis of the subcellular localizations of proteins and their be-
havior over time on a large-scale will be essential to efficiently
assess the dynamic topology of protein networks. In summary,
the framework presented here provides a platform for a number
of functional genomics applications, like large-scale automated
morphological cell assays for gain and loss of function, as well as
chemical screening in human cells.

METHODS

Live Cell Arrays
The plasmid-gelatin-transfection solution was prepared in 384-
well plates (Nunc) as follows: 500 ng of GFP or YFP tagged plas-
mid, 7.5 µL EC buffer and 0.75 µL Enhancer were incubated for
10 min at room temperature and then mixed with 2.5µL Effec-
tene (Effectene Transfection Kit, Qiagen) and again incubated for
10 min at room temperature in 7.25 µL of 0.08% Gelatin (G-
9391, Sigma). The plasmid-gelatin-transfection solution was ar-
rayed onto 1-well Labtek (Nunc) slides using the ChipWriter
Compact robot (Biorad). The spot diameter was 400 µm for all
experiments. After printing, 6.5 � 105 MCF7 cells were plated on
the Labtek slide and cultured for 10 h in growth medium con-
taining 10% inactivated fetal calf serum, 1% glutamine, and 1%
penicillin-streptomycin. Thereafter, Hoechst stain (33342,
Sigma, 1 µg/mL final concentration) was added for 10 min to
stain cell nuclei. For live cell data acquisition the growth medium
was replaced by imaging medium (DMEM without carbonate but
supplemented with 30 mM Hepes, pH 7.4, obtained from Sigma).
The transfection efficiency varied between 1% and 30% depend-
ing strongly on the cDNA to be transfected.

Automatic Image Acquisition
For image acquisition the Metafer4 system (MetaSystems) based
on an Axiovert 200M microscope (Zeiss) equipped with 40�/
0.95 air Plan-Apochromat objective (Zeiss), a motorized scanning
stage (Märzhäuser), and a CCD camera (Jai M1, 1280 � 1024
pixels, 6.7 µm � 6.7 µm square pixels, 60 sec maximum integra-
tion) was used. Its integrated automated functions include a mo-
torized stage (1 µm resolution, maximum speed of 10 cm/sec,
0.025 µm focus step size) and a motorized reflector revolver
(Hoechst filter: excitation 390/22, dichroic beam splitter 420,
emission filter 460/50; GFP/YFP filter: excitation 500/20, dichroic
beam splitter 515, emission filter 535/30).

For auto-focusing, the stage is first moved down and then up
to a number of focus planes to minimize the effects of mechani-
cal focus drive backlash. At each position an image is captured.
The number of planes and distance between consecutive focus
planes is defined in the parameter set of the imaging microscope.
For each of the captured images a focus criterion is computed.
The stage is then moved to the Z-position corresponding to the
plane optimizing the focus criterion.

After global or local background correction, the gray-level
histogram of the counterstain channel image is computed and
analyzed. Based on the maximum and minimum gray levels in
the image and a threshold factor defined in the parameter set, the
system calculates a global segmentation threshold. A fast-
contour-following algorithm is used to isolate the objects defined
by this thresholding operation. Finally, the system accepts a can-
didate as a ‘valid’ cell nucleus if the object area ranges from
50–500 µm2, concavity depth <0.8, and aspect ratio <3.0.
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Only those valid cells are selected for imaging of subcellular
localization. Multiple image acquisition with three integration
times (1�, 2�, and 3� the calculated integration time, respec-
tively, with maximum integration of 2 sec) was applied to the
GFP/YFP signal. A selection of the brightest unsaturated (thresh-
old for saturation: 4 saturated pixels) GFP/YFP cell image (ROI of
148�148 pixels, centered by center of nucleus) from the three
integrated GFP/YFP images was determined. Tiles are considered
positive if total intensity >400 and relative center intensity >20.
The relative center intensity is the ratio between minimum gray
level within and maximum gray level outside of half of the radius
of the cell. The scanning time for 150 spots imaged in this study
was in the range of ∼12 hours (∼300 sec for three times three
images per spot). Even though the time required for scanning can
become a bottleneck in more extended screens, it should be
noted that the scanning time could be dramatically decreased if
the number of focal sections and the maximum integration time
are reduced.

Feature Generation and Classification
Four hundred and forty-eight different image features compris-
ing the following feature groups with different parameterization
were extracted: granularity (position-depending differentiation),
object-related features, intensity distribution, main momentum
axis, Karhunen-Loève transform (Bishop 2000), tree-structured
wavelets (Chang and Kuo 1993), gray scale invariants (Burhardt
and Siggelow 2001), Haralick texture features (Haralick 1979),
Zernike moments (Zernike 1934), and Sobel edge features. All
extracted features with a standard deviation of zero (calculated
on images in the training set) were discarded, resulting in 323
remaining features. The feature selection of stepwise discrimi-
nant analysis (STEPWISE; Leray and Gallinari 1999) is a Fisher
test with Wilk’s � as a measure, while the Mutual Information
(MI) measures the reduction of uncertainty of a feature due to a
given class (Ragg 2002). Significance Analysis Microarray (SAM)
is derived from a permutation test on modified t-test statistic
(Tusher et al. 2001). As input for SAM, we used the class-labeled
image feature values rather than gene expression values. This
results in a score for every image feature on the bases of the
relative differences of feature means between phenotype classes.
Thus, the SAM approach provides feature selection by ranking
the calculated feature scores and by selecting the best features.

The Support Vector Machines (http://www.csie.ntu.edu.tw/
∼cjlin/libsvm/) and Bayesian learning ANN (http://www.
ncrg.aston.ac.uk/netlab/) are integrated in our propriety data
mining software ‘mine-it.’ As kernel function for the SVM, we
utilized the Radial Base Function. In a threefold cross-validation
on the training set (model selection) the kernel parameter � for
the Radial Base Function and the misclassification parameter C
were varied in the ranges of 20–2�30 and 20–230, respectively.
BayesANN consists of a multilayer backpropagation neural net-
work with one hidden layer, sigmoid transfer function, cross-
entropy as error measure, and scaled conjugate gradient error
minimization. The initial weight decay parameter was 0.01, re-
estimated automatically by the Bayesian learning after every 20
epochs until the maximal number of 400 epochs was reached.
For model selection, the network topology was varied over the
range of 10–20 hidden neurons and 10–50 input features. The
second version of ANN in this study uses genetic algorithms
(ANN/GA), based on the NevProp3 package by Philip Goodman
for parameter optimization (http://brain.unr.edu). In contrast to
BayesANN, the ANN/GA was used with Quickprop error minimi-
zation for computational reasons. ANN/GA software was further
developed for parallelization with Message Passing Interface
(MPI) for an optimized runtime on a 20-node Debian/Linux clus-
ter. The optimization procedure aims at identifying the optimal
values of number of input features, number of hidden neurons,
learning rate, momentum rate, and epochs. The genetic algo-
rithm was mutated by 80% crossover, 3% mutation rate, and
reproduced through binary tournament selection. The fitness cri-
terion was the ANN fivefold cross-validation error on the training
set.
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